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ABSTRACT

. ak.
The result of this paper is a generalization of our characterization of

the limits of multivariate cardinal splines.\ Let M, denote the n~fold
}92 Me Lz(ﬂg) and denote by

convolution of a compactly supported functi

Sp = [ LM (e = ) & ce 22}
je2
e

thquﬁih of translates of M,. We prove that there exists a set Q with
= 4 o
vold(ﬂ) = (2n) such that for any f ¢ Ly(K°),
dist(f,S;) *+ 0 as n > =,

if and only if the support of the Fourier transform of f is contained in

AMS (MOS) Subjecg‘qlgss;fécations: 4163, 41A30, 42B99
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SIGNIFICANCE AND EXPLANATION

In recent reports (#2485, #2686] we have studied the convergence of
interpolation with box-splines as their degree tends to infinity. The result
stated in the abstract generalizes one of our main theorems. Although more
general, the proof is quite short and the essential features of our earlier

arguments become more apparent.
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CONVERGENCE OF CARDINAL SERIES
Carl de Boor(!), Klaus Héllig(1?) and Sherman Riemenschneider(®)
1. Introduction. We extract the essential features of our earlier arguments [1-4;

concerning the limits of box-splines as their degree tends to infinity. Somewhat surprisingly,
. the resulting discussion, although covering a more general situation, is very much shorter.

We start with a compactly supported (nonzero) Lz-function M on R for which the
Fourier transform

M(¢) := /M(a:) exp (—iz€)dz

satisfies

IM(€)] = O(1€]7Y), 1€ — oo. (1)

With
M,:=Mx...+ M

denoting the n-fold convolution of M, we consider approximation in L; from the span

Sp = { Z c(JIMp(-—J) : c€ lz(Zd)}

jezd
of the integer translates of M,. We wish to characterize the class

Seo := {f € Ly(RY) : lim_dist(f,S,) = 0}.

For this we introduce the set
0= {€ € RY: M(€ = 2m5)i < [M(E)), j € Z4\0}
and establish the following
Proposition. 1 is a fundamental domain, i.e.
AN +273)=0,5#0

Uy (ﬁ +27j) = R

The class So consists of functions of exponential type characterized by the set f1.

Theorem. [ € So iff supp f C 0.

(1) Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
. (2) Supported by International Business Machines Corporation and National Science
Foundation Grant No. DMS-8351187.
(3) Supported by NSERC Canada through Grant # A 7687.
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2. Proof of the Proposition. The assumption (1) implies that for any positive C,
#{i : |M(E +2m5)| 2 C} < oo, (2)

Let X
D:={¢€R? : M(£) # 0}.

On D, the quotient R X
a; (&) := M(§ + 2n5)/M(£)

is well defined. In particular,

0 ={¢cR? : |a;(¢)| <1 for j € Z9\0}.

Lemma. For all £ € R? there is j € Z¢ such that ¢ + 275 € (1.

Proof. Since M is an entire function, it is sufficient to prove this for £ € D. The set

J(={jez: IM(5+21rj)|=S‘:P|M(f+27rk)|}

is finite and nonempty, by (2). Hence we are done unless #J(¢’) > 1 for all £’ in some
neighborhood of £. In this case at least one of the real analytic functions

fi—

with R
fi := |M(- + 27k)|?

vanishes on some open set, hence must vanish identically. But this implies that
|M| = |M(- + 2nr)]

for r := j — 3’ # 0, contradicting (1).

To finish the proof of the Proposition, assume that £ and £ + 27 are both in 1. Then,
the assumption j # 0 leads to the contradiction

1> 1/|M(€ + 2m5)/ M(€)| = |M(€ + 275 — 2m5)/ M (€ + 275)| > 1.
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3. Proof of the Theorem. We introduce the trigonometric polynomial

Po(€) := Y Ma(j)exp (i7€) = Y M(¢ +2n3) = M(£) ) _(a;(€))"
J J 3

with the last equality holding, at least, on D. For any 5 # 0 and £ € 11,
la;(€)1 <1 —€(4,€) (3.1)

for some positive €(j, £), while, by (1) and (2),
la;(€)| < 1/(1 + Clj}) (3.2)
for some positive C uniformly for all but finitely many j. Consequently, for £ € 1,
Pa(€)/Ma(€) = ) _(a;(€)" — 1, n — o0, (9)
J

and the convergence is uniform on compact subsets Q; of 2. This shows, in particular,
that, for large enough n, P, does not vanish on such ;.

(i) Assume that f € L, and suppf C 01 and denote by x the characteristic function of such
a set {1;. Since Q is a fundamental domain, we can expand fx/P, in a Fourier series,

(Fx/Pa)(€) = Y enls) exp (i5€), €€ A,

j
with coefficients ¢, € L2. This implies that

8p 1= Zc,.(j)M,.(- -7} € L.
J

Since f vanishes outside {1,
|f = 8alZ,cra) = 1f = 8alE, i) + D 13a( + 275) 32 (q)-
J#0
The first term is estimated by
\f - 8nlL,(n) < \f = xflLa@) + Ixf - XfM/Pnng(ﬂ)-

The first norm on the right hand side is small if 2, is chosen close to . For fixed 0;, the
second norm is small by (4) if n is sufficiently large.
For the terms in the sum it follows from (2) and (3) that

IMa(- +275)(Fx/ Pa) La(@) = 1(a5)"Ma(fx/ Pl Lo (2)
< (181 Le (0))"IMn/ PalLo @) f sy = 0 n — oo,
(ii) Assume that s, = 3, cn(j)Mn(- — ) converges to f in L;. From
8n(€ + 275) = (a;(£))"34(¢), £ € D,

we see that
18l L, (00, +275) € (18510 (02:))" 18alL, — 0.

It follows from (3) that, as an element of L, f vanishes off 0.
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